A COMPARISON OF CONVOLUTIONAL NEURAL NETWORKS AND VISION
TRANSFORMERS AS MODELS FOR LEARNING TO PLAY COMPUTER
GAMES

By Adrien Dudon & Oisin Cawley
http:/ /typ.adriendudon.me/ | https://github.com/Deewens/FYP-DRL-Comparison

Introduction

The Convolutional Neural Network (CNIN| architecture, coupled with the Double Deep Q Network (DQN (a Reinforcement Learning algorithm), has been
extensively employed in solving complex video game environments. Nevertheless, the emergence of the Vision Transformer (ViT) architecture has demonstrat-
ed superior performance in various tasks previously dominated by CNINs. This research seeks to replicate the study conducted by Meng et al. and assess
whether the Swin Transformer, a variant of ViT, can effectively learn to play video games using Reinforcement Learning and achieve comparable results within
fewer training steps as compared to the same experiment with CNIN.

. . Observation
Experimental Details

To replicate the approach of Meng et al. (2022), which replaces the traditional CNN with a Swin Trans-
former in Double DQN, identical algorithms and hyperparameter settings were employed.
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Results

Results show that the agentfs trained with the CNN architecture outperformed the agents trained with Swin Transformer (for 10 million steps).
However, in the Meng et al. study, Swin Transformed outperformed CNN, but only for a significant number of training steps (50 millions).
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Conclusion
Training an agent with the Swin Transformer proved to be computationally intensive and demanded substantial GPU memory, making it a challenging task for

an average computer and impractical for consumer video games, considering the limited ownership of such hardware. As a result, CNN remains a viable

option for high-performance algorithms, considering the hardware constraints of end-user machines.




