INTRODUCTION
Micropropagation is used to produce large numbers of
clones from a desirable stock plant. It is an established
process in many areas of horticulture and has proven
useful in addressing issues related to crop stability and
conservation of endangered species. ${ }^{1}$ As it stands, this
biotechnology is positioned as an expensive out-of-reach
option for smaller markets, enterprises, and individuals
due to the high costs associated with it, which presents an
opportunity cost to progress in the field. ${ }^{2}$
The aim of this study was to investigate if economical
alternatives to laboratory-grade inputs can be used
without detrimental effect on outcome in
micropropagation.
METHODS
Three varieties of 5 s. tuberosum were initiated using
economical input alternatives to agar, laboratory-grade
sucrose, magenta pots, and laminar flow cabinets.
48 samples were prepared using 4 treatments (n=6); 24
containers were prepared with growth media at a laminar
flow cabinet and the rest at a Bunsen burner. Growth
results were taken 23 days after explant material placed
on growth media and put into propagation incubator.


