Use of the biocatalyst Laccase in the oxidation of secondary alcohols

A00273292 Hazel Browne Supervisor: Dr. Noreen Morris

Introduction

Green Chemistry, biocatalysts, laccase and mediators

Figure 2. Oxidation reaction of Cinnamyl alcohol

Introduction: Laccase

Laccase belongs to the family of multicopper oxidases.

- Oxidise phenolic and nonphenolic compounds.
- Over 60 strains of fungi and bacteria.
- Has a redox potential of 0.4-0.8V
 (Cañas and Camarero, 2010)

Figure 4. Laccase Structure (Gu et al. 2021)

Introduction: Mediators

-O₃S

TEMPO

- Artificial
- Most commonly used

ABTS

- Artificial
- Used for the Laccase activity assay

Syringaldehyde

- Natural
- By product of the paper making industry

Figure 5. Block diagram HPLC (Hansen, 2012)

Methods: HPLC

- Compounds posses chromophores
- Reverse phased used
- Mobile Phase: Water and Acetonitrile 50:50

Instrument	Shimadzu 10A			
Column	Phenomenex C18 150 x 4.60mm 3 micron			
Size of injection	50µl	Flow rate	1ml/min	
Attenuation	8	Wavelength	228nm	
Mahila nhaaa	50:50 Water: Acetonitrile			
woble phase	(0.05%TFA)		\land	

Instrument	Shimadzu 10A -		
Column	Phenomenex C18 150 x 4.60mm 3 micron		
Size of injection	50µl	Flow rate	1ml/min
Attenuation	6	Wavelength	210nm
	50:50 Water: Acetonitrile		
Mobile phase	(0.05%	%TFA)	

- 1. Determined the activity of the laccase enzyme
- 2. Established the retention times of the substrates and products
- 3. Monitored over a 5 hour time period
- 4. Monitored over a 5 hour time period
- 5. Peak areas used to determine concentration of substrates/ products

Results and discussion

Figure 10. Geraniol oxidation reaction with TEMPO

Figure 11. Rate of formation of Cinnamaldehyde

Figure 12. Rate of formation of Citral

Summary of product generation

 $\langle \rangle$

|

 \Diamond

	Mediators	Amount of cinnamaldehyde generated (mM)	Amount of citral generated (mM)	
-	TEMPO	265.35	271.41	
	ABTS	73.48	0	
	Syringaldehyde	38.72	2.54	

03 Discussion

- TEMPO was the most effective mediator for both oxidation reactions
- ABTS was the second most effective mediator for the oxidation of cinnamyl Alcohol
- Syringaldehyde was the second most effective mediator for the oxidation of geraniol

- TEMPO was the most effective mediator for both oxidation reaction
 Areas for further research:
- Using different mediators HBT and syringaldehydes
- Wider range of substrates

References

 $\langle \rangle$

- Cañas, A.I. and Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable ecofriendly processes. *Biotechnology Advances*, 28(6).
- Ferreira-Leitão, V.S., Cammarota, M.C., Aguieiras, E.C.G., de Sá, L.R.V., Fernandez-Lafuente, R. and Freire, D.M.G. (2017).
 The protagonism of Biocatalysis in green chemistry and its environmental benefits. *Catalysts*, 7(1).

- Gu, Y., Yuan, L., Jia, L., Xue, P. and Yao, H. (2021). Recent developments of a co-immobilized laccase-mediator system: a review. *RSC Advances*, 11(47).
- Hansen, S., Pedersen-Bjergaard, Stig. and Rasmussen, Knut. (2012). Introduction to pharmaceutical chemical analysis.
 John Wiley & Sons Inc.
- Martínez-Montero, L., Gotor, V., Gotor-Fernández, V. and Lavandera, I. (2018). Mild Chemoenzymatic Oxidation of Allylic sec-Alcohols. Application to Biocatalytic Stereoselective Redox Isomerizations. ACS Catalysis, 8(3).
- Slidesgo.com. (2023). Free Google Slides themes and Powerpoint templates | Slidesgo. [online] Available at: https://slidesgo.com/ [Accessed 24 Mar. 2023].

How to complete an awesome final year project

Managing time

- Split work into manageable packages
- 2. Research the amount of time necessary for procedures
- 3. Do not overpack your timetable
- 4. Write up as you go along

Thank you for listening

Any Questions?